

The Second International Conference on Innovations in Information Technology (IIT’05)

 1

EVALUATION TIME OF BOOLEAN FUNCTIONS: AN
ESTIMATION METHODOLOGY BASED ON THE PATH LENGTH

OF THEIR BDD REPRESENTATIONS

P.W.C. Prasad, M. Raseen and B.I. Mills
College of Information Technology, UAE University, P.O. Box17555, UAE.

A. Assi
American University of Technology, Department of Computer Engineering, Lebanon.

Correspondence Email: prasadc@uaeu.ac.ae

ABSTRACT
In digital systems where Boolean functions are frequently manipulated, it is important to know how
evaluation time of Boolean functions is consumed during their execution by the processor. Estimation of the
evaluation time of Boolean functions plays an important role in function-architecture co-design. The
evaluation time complexity of Boolean functions represented by Binary Decision Diagrams (BDDs) is
directly related to the path length of the BDD. This paper describes a BDD approach that gives an
estimation method for the time evaluation of Boolean functions. The proposed technique is validated using
both experimental and mathematical techniques.

 Keywords: Estimation, Binary Decision Diagram (BDD), Path Length, Boolean function

1. INTRODUCTION

BDDs are well known structures used in the design verification and optimization of digital
circuits [1]. For the last two decades, BDDs have gained great popularity in representing discrete
functions. A BDD in general is a direct acyclic graph representation of Boolean functions
proposed by Akers and Bryant [2], [3].The success of this technique has attracted researchers in
the area of VLSI CAD systems [1], [4].

The efficiency of a BDD depends mainly on the size of its graph representation. Over the years
the complexity of BDD implementation kept increasing, and the number of nodes in a BDD
became a major concern, since it is directly related to the time and space requirements of the
digital circuit represented by this BDD [5], [6]. Today, researchers in this area are actively
involved in the search for methods to minimize the size of BDDs and consequently improve the
overall performance of the designed systems.

One of the important tasks during the design phase of a digital system is to prove the efficiency by
checking whether the design fulfills the requirements. Evaluation time is one of the important
factors which use the BDD to evaluate logic functions [7]. The evaluation time is not directly
related to the number of nodes in a BDD, but it is proportional to the path length of the BDD.
Therefore, minimization of the path length can improve the performance of the circuit
implementing a Boolean function, which will eventually increase the quality of the final
implementation [8], [9]. In general the minimization of the path length in Decision Diagrams
(DD) is important in database structures, pattern recognition, logic simulation and software
synthesis [8]. The minimization of path lengths are of great importance in embedded systems, real
time operating system applications [10], [11] and also for Pass Transistor Logic (PTL) [12], [13].

In order to find the minimum Shortest Path Length (SPL), we need to create the whole BDD
representing the Boolean function with the best possible variable ordering. Building the whole
BDD may lead to some complexity in the design process in term of time required to implement,
verify and test the design. It will be useful to have a kind of estimation for the path length size
prior to make decisions on the feasibility of the design.

The main objective of this paper is to introduce a novel method for the prediction of the SPL of
BDDs based on mathematical model. The proposed model will provide some valuable

The Second International Conference on Innovations in Information Technology (IIT’05)

 2

information about the path length complexity for any number of variables and for any type of
variable ordering method which will enable the system performance to be analyzed without
building the BDD. It is also capable of predicting the number of product terms in the Boolean
function that leads to the maximum SPL complexity. The remaining of this paper is divided as
follows: in the second section, we provide the background information pertaining to the BDD and
the path length of a BDD. Section three reviews the previous work done on estimation of BDD
complexities. The proposed method with the experimental results followed by the mathematical
model are given in section four and five respectively. The advantage of this mathematical model
is given in section six. Finally, we conclude our paper with future developments in this research
work.

2. PRELIMINARIES

Basic definitions for BDDs and path length are given in [1], [3], [5], [8], [10]. In the following we
review some of these definitions.

Definition 1: A BDD is a directed acyclic graph (DAG). The graph has two sink nodes labeled 0
and 1 representing the Boolean functions 0 and 1. Each non-sink node is labeled with a Boolean
variable v and has two out-edges labeled 1 (or then) and 0 (or else). Each non-sink node
represents the Boolean function corresponding to its edge "1" if v = 1, or the Boolean function
corresponding to its edge "0" if v = 0.

Definition 2: An Ordered BDD (OBDD) is a BDD in which each variable is encountered no more
than once in any path and always in the same order along each path.

Definition 3: A Reduced OBDD (ROBDD) is an OBDD which no nodes have equivalent
behavior.

2.1 Variable Ordering

The size of a BDD is largely affected and its variation can be linear or exponential depending on
the choice of the variable ordering in building the BDD. Figure 1 illustrates the effect of the
variable ordering [3] on the size of BDDs for the Boolean function (1):

431432121 xxxxxxxxxf ⋅⋅+⋅⋅⋅+⋅= (1)

 (a) 4321 xxxx (b) 4231 xxxx

Figure 1: Effect of the variable ordering on the size of BDD

Definition 4: In a BDD, a sequence of edge and nodes leading from the root node to a terminal
node is called Path. The number of non-terminal nodes on the path is called the Path Length.

Definition 5: The APL is equal to the sum of the node traversing probabilities of the non-terminal
nodes [8], [10]. Node traversing probability denoted by)(ivP is the fraction of all 2n assignments
of values to the variables whose path includes node iv . The APL can be expressed by the
following equation (2):

The Second International Conference on Innovations in Information Technology (IIT’05)

 3

∑
−

=

=
1

0
)(

N

i
ivPAPL (2)

Where, N is the number of non-terminal nodes.

Definition 6: The Shortest Path Length (SPL) of a BDD denoted by SPL (BDD), is the Length of
the Shortest Path from root node to terminal node.

3. PREVIOUS WORK

In this section we will briefly describe works done in the area of the estimation of BDD
complexity prior to explaining the proposed method.

3.1 Relation between the Size of a Boolean Function and the ROBDD Complexity

The complexity of the ROBDD mainly depends on the number of nodes represented by the
ROBDD. An experiment was done in [14], [15] to analyze the complexity variation in ROBDDs
i.e. the relation between the number of product terms and the number of nodes for any number of
variables. The experimental graph variation reveals that the complexity of the ROBDD can be
modeled mathematically by the equation (3). Figure 2 indicates that the mathematical model
represented by equation (3) provides a very good approximation of the ROBDD complexity.

1)(+⋅⋅= ⋅− γβα NPTeNPTNN (3)
Where,
NN is the number of nodes (Complexity of ROBDD), NPT is the number of non-repeating product
terms in the Boolean function, α, β and γ are three constants. For 10 variables the values of the
constants are α = 7.7, β =0.904 and γ = 0.0145.

Figure 2: Experimental/Equation BDD Complexity for 10 variables.

3.2 Behavior of XOR/XNOR Min-term Representations

This work analyzed the complexity variation in ROBDD for a specific group of XOR/XNOR
min-terms [16]. A graph that represents the ROBDD complexity in terms of number of nodes with
respect to the number XOR/XNOR min-terms of the Boolean function is then plotted and the
behavior of XOR/XNOR was modeled mathematically by equation (4): Figure 3 show that the
mathematical model represented by equation (4) provides a good approximation of the
experimental ROBDD complexity.

 [] 1)(
5.022 +−−⋅= ββα NXMNN (4)

The Second International Conference on Innovations in Information Technology (IIT’05)

 4

where, NN is the number of nodes (Complexity of ROBDD), NXM is the number of XOR/XNOR
min-terms in the Boolean function, and β is 2n-2 (n-number of inputs) and α = 0.605234.

.
Figure 3: Experimental/Equation ROBDD Complexity for XOR/XNOR Min-terms

4. BDD PATH LENGTH COMPLEXITY ANALYSIS

4.1 Proposed Method

An experiment was carried out using Colorado University Decision Diagram (CUDD) Package
[17] to analyze the complexity variation of SPL with the number of product terms for any number
of variables. For each variable count n between 1 and 14 inclusive, and for each term count
between 1 and 2n-1, 100 Boolean functions were randomly generated and the SPL average was
determined by using CUDD package for specific variable ordering technique and was plotted
against term count for each variable count. The following algorithm explains this method in
detail.

Step 1: The number of variables (n) is fixed (for example n =10 variables)
Step 2: The variable ordering technique is selected (Ex: Symmetric Sift is chosen from the
CUDD)
Step 3: Number of product terms (m) is set to 1
Step 4: A random Boolean function with m product terms is generated.
Step 5: Run the CUDD in order to build the BDD for the Boolean function
Step 6: Reorder the BDD using the variable ordering selected in step 2.
Step 7: Record the number of nodes in the ROBDD.
Step 8: Steps 4 to 7 are repeated 100 times to build 100 different BDDs for different random
equations with the same number of product terms. For each BDD the APL and SPL are calculated
and the mean sizes are recorded.
Step 9: Steps 4 to 8 are repeated for m = 2, 3, 4, etc. until the average size of the SPL
complexities becomes 1.
Step 10: A graph that represents the SPL complexity in terms of number of nodes with respect to
the number product terms of the Boolean function is then plotted.

4.2 SPL variations against the size of the Boolean function

Figure 4 illustrates the SPL complexity relation for Boolean functions with product terms having
n=10 variables using the Symmetric Sift reordering technique. The Symmetric Sift reordering
technique was used as the base variable ordering method, due to its efficiency compared to all the
CUDD methods.

The Second International Conference on Innovations in Information Technology (IIT’05)

 5

Figure 4: SPL size variation for 10 variables using the Symmetric Sift reordering technique.

The graph indicates that the complexity (size) of the path length in general (SPL) increases as the
number of product terms increases. This is clear from the rising edge of the curve shown in
Figures 4. At the end of the rising edge in the graph, the size of the SPL reaches a maximum
(4.5≅SPL in this case). This peak indicates the maximum SPL that any Boolean function with 10
variables can produce independently of the number of product terms. Apart of that the peak also
specifies the number of product terms (critical limit) of a Boolean function that leads to the
maximum number of SPL for any Boolean function with 10 variables. The number of product
terms that leads to the maximum SPL is 50. If the number of product terms increases above the
critical limit, as expected, the product terms starts to simplify and the BDD will reduce, which
will reduce the SPL size.

The SPL graph shown in Figure 4 indicates that as the number of product terms increases the
complexity of the SPL decreases in a slower rate and ultimately reaches to 0. Figure 4 illustrates
that the falling edge of the SPL graph behaves a bit different than the other complexity graphs
shown in Figure 2 and Figure 3, where the decrease is with a roll off, to be independent of the
variable count. The location and height of the peak and the slope of the logarithm of the roll off
varied. Reduction of the SPL complexity to 0 implies that all the product terms simplify to logic
1. A simple algebraic expression for these curves was developed, unifying all the cases.

5. MATHEMATICAL MODEL FOR THE PATH LENGTH BEHAVIOR

Exponentials of rational polynomials fitted the data well; but, a theoretical precedent was not
apparent. On the other hand,)1()1log(++ tt not only has the same basic behavior, but is also
implicated in other complexity measures, such as Kolmogorov, Tichner, Shannon and Lempel-Zif
complexity, as well as the density of the prime numbers. The generic SPL graph has an initial
rise, two peaks, and roll off to zero, suggesting the sum of two formulas, but with horizontal and
vertical scaling, and a little peak shaping. Under suitable conditions, if)(xf has a peak, then,

max
max

)(ff
xf ⋅







α

 has a broader or narrow peak for 1〈α or 1〉α . Analyzing all the above factors

for the behavior of the SPL graph, the complexity behavior was modeled mathematically by the
following equations:

∑
=










+
+

=
2

1))1((log
)1(log1

i

i

it
t

α

β (5)

Where, t is the number of product terms in the Boolean function.

The Second International Conference on Innovations in Information Technology (IIT’05)

 6

The (mostly) constantsα and β parameters affect the shape of the peak. The
values 1,7 11 == βα and 102 =α gave a close fit, but 2β taking on two distinct values. 32 =β for

11≤v and 52 =β for 12≥v . Eventually the following equation (6) was used in order to calculate
the constant 2β ,










+
+=

− 1][
8.13 2)5.11(2 ve

β (6)

It can be inferred from the Figure 4 that the curve has two peaks (Figure5), which needs four
scaling parameters to define the locations of the peaks: i.e.),(11 yx and),(22 yx

Figure 5: Peaks of the SPL complexity behavior

The final behavior of the SPL curve can be found by the following equation:

()()∑
= 


















+






 +

⋅=
2

1 1log

1log
1

i

i
i

i

i

x
t

x
t

y

α

β (7)

In this mathematical model, the peaks),(ii yx were found by performing an empirical fit for each
time. Figure 6 depicts the experimental results obtained by the CUDD package and the theoretical
results obtained using equation (7). It shows that the mathematical model represented by equation
(7) provides a very good estimation for the SPL complexity behavior, where the experimental and
equational results produced a match.

Figure 6: Experimental/Equation SPL Complexity behavior for 10 variables

The Second International Conference on Innovations in Information Technology (IIT’05)

 7

Further verification of the mathematical model was done by matching the model for Boolean
functions with 2 to 15 variables. It can be inferred that the experimental and mathematical curves
are following a similar pattern for all the variable levels. Figure 7 and Figure 8 illustrate the
experimental and mathematical models for variables 8 and 12 respectively.

Figure 7: Experimental/Equation SPL Complexity behavior for 8 variables

5.1 Effect of the Reordering Methods on Path length Variations

The experiment done in section 4 using the Symmetric Sift CUDD reordering method was
extended to understand the relation of Symmetric Sift SPL graphs with other reordering
techniques. It was observed that the relation between the graphs follows the same pattern, and it
varies only on the amplitude factor of the curves.

Figure 8: Experimental/Equation SPL Complexity behavior for 12 variables

By analyzing the effect of the reordering methods on the model, equation (7) can be modified
with an additional amplification factor (µ). The amplification factor is 1 for the Symmetric Sift,
greater than 1 for methods with lower efficiency, and lesser than 1 for methods with higher
efficiency than the Symmetric Sift. Equation (8) represents the mathematical model for the SPL
for any reordering method.

()()∑
=



















+






 +

⋅⋅=
2

1 1log

1log
1

i

i
i

i

i

x
t

x
t

y

α

βµ (8)

The amplification factor was calculated and depicted in table 1. Figure 9 shows the comparison
graphs of the SPL behavior for Symmetric Sift with two of the other CUDD variable ordering

The Second International Conference on Innovations in Information Technology (IIT’05)

 8

techniques mainly the Genetic Algorithm and Window2. These two graphs show that the
efficiency of the reordering method has a definite impact on the path length complexity; an
efficient variables ordering leads to a reduced number of nodes, which leads to reduced path
lengths.

Table 1: Amplification Factor (µ)
Variable Reordering
Method

Amplificatio
n Factor (µ)

Random 1.024
Random Pivot 0.998
Sift 1.001
Symmetric Sift 1.000
Symmetric Sift Converge 0.971
Group Sift 1.006
Group Sift Converge 0.963
Window 2 1.085
Window 3 1.045
Window 4 1.018
Window Converge 2 1.058
Window Converge 3 1.025
Window Converge 4 0.989
Annealing 0.945
Genetic Algorithm 0.942
Exact 0.942

Figure 9: Effect of the reordering methods for SPL variations

6. ADVANTAGES

The developed mathematical model represented by equation (7), provides some useful
information on the following, without the need of building the BDD.

1. The complexity behavior of the SPL, given the number of product terms of the Boolean
function

2. The number of product terms for which the maximum possible depth will occur.
3. The maximum complexity of the SPL of Boolean functions for any number of variables.

The Second International Conference on Innovations in Information Technology (IIT’05)

 9

7. FUTURE WORK

Future work includes minimizing the global error of the match and to develop experiments to
much larger number of variables. We are in the process of matching an automated global fit for
any SPL curve in order to find the complexity for any number of product terms. Investigation and
modeling a mathematical relationship for other BDD characteristics (i.e. average path length,
longest path length and number of path) are also considered.

8. CONCLUSION

We have discussed the idea of using BDD to study and model a relationship between the path
length and the number of product terms in a Boolean function. We have introduced a
mathematical model that can predict valuable information related to the SPL behavior without
building the BDD. A great reduction in time complexity for digital circuits' designs can be
achieved and the model can also offer useful information to handle evaluation time minimization
by path length optimization problems prior to the design of digital circuits. Our experimental
results show good correlation between the experimental results and those given by the
mathematical model.

REFERENCES

[1] K. Priyank, “VLSI Logic Test, Validation and Verification, Properties & Applications of
Binary Decision Diagrams,” Lecture Notes, Department of Electrical and Computer
Engineering University of Utah, Salt Lake City, UT 84112.

[2] S. B. Akers, "Binary Decision Diagram," IEEE Trans. Computers, Vol. 27, pp. 509-516,
1978.

[3] R. E. Bryant, "Graph−Based Algorithm for Boolean Function Manipulation," IEEE Trans.
Computers, Vol. 35, pp. 677-691, 1986.

[4] Miczo, Alexander, Digital Logic Testing and Simulation, Chapter 2: "Combinational Logic
Test," Harper and Row, New York, 1986.

[5] R. Drechsler and D. Sieling “Binary Decision Diagrams in Theory and Practice,” Springer-
Verlag Trans, pp. 112-136., 2001.

[6] P.W.C. Prasad, A. Assi and M. Raseen, “BDD Minimization Using Graph Parameter
Permutation”, The 2004 International Conference on VLSI, 491-494, 2004.

[7] Görschwin Fey, Junhao Shi and Rolf Drechsler, “BDD Circuit Optimization for Path Delay
Fault-Testability”, Proceedings of EUROMICRO Symposium on Digital System Design, pp.
168-172, 2004.

[8] S. Nagayama and T. Sasao, “On the minimization of longest path length for decision
diagrams,” International Workshop on Logic and Synthesis (IWLS-2004), pp. 28-35, 2004.

[9] Y. Liu, K. H. Wang, T. T. Hwang, C. L. Liu, “Binary decision Diagrams with minimum
expected path length,” Proceedings of DATE 01, pp. 708–712, 2001.

[10] R. Ebendt, S. Hoehne, W. Guenther, and R. Drechsler, “Minimization of the expected path
length in BDDs based on local changes,” Asia and South Pacific Design Automation
Conference (ASP-DAC’2004), pp. 866-871, Jan. 2004.

[11] S. Nagayama and T. Sasao, “Code generation for embedded systems using heterogeneous
MDDs,” the 12th workshop on Synthesis and System Integration of Mixed Information
technologies (SASIMI 2003), pp. 258-264, Hiroshima, Japan, April 3-4, 2003.

[12] R. S. Shelar and S. S. Sapatnekar, “Recursive Bi-partitioning of BDD's for Performance
Driven Synthesis of Pass Transistor Logic,” Proceedings of IEEE/ACM ICCAD, pp. 449 –
452, 2001.

[13] V. Bertacco, S. Minato, P. Verplaetse, L. Benini, and G. De Micheli: "Decision Diagrams
and Pass Transistor Logic Synthesis", Stanford University CSL Technical Report, No. CSL-
TR-97-748, Dec. 1997.

The Second International Conference on Innovations in Information Technology (IIT’05)

 10

[14] M. Raseen, P.W.C. Prasad and A. Assi, “Mathematical Model to Predict the Number of
Nodes in an ROBDD,” The 47th IEEE International Midwest Symposium on Circuit and
Systems (MWSCAS), Vol. III, pp.431-434, 2004.

[15] Ali Assi, M. Raseen, P.W.C. Prasad and A. Harb, “An Efficient Mathematical Estimation of
the BDDs Complexity”, Accepted for presentation in 16th IASTED International Conference
on Modeling and Simulation, pp 381-386, 2005.

[16] M. Raseen, A.Assi, P.W. C. Prasad and A. Harb, "Effect of Boolean Min-terms on the
Complexity of ROBDDs", International Conference on Computational Intelligence (ICCI
2004), pp.454-457, 2004.

[17] F. Somenzi, “CUDD: Decision Diagram Package”. ftp://vlsi.colorado.edu/ pub/, 2003.

