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ABSTRACT 
In digital systems where Boolean functions are frequently manipulated, it is important to know how 
evaluation time of Boolean functions is consumed during their execution by the processor. Estimation of the 
evaluation time of Boolean functions plays an important role in function-architecture co-design. The 
evaluation time complexity of Boolean functions represented by Binary Decision Diagrams (BDDs) is 
directly related to the path length of the BDD. This paper describes a BDD approach that gives an 
estimation method for the time evaluation of Boolean functions. The proposed technique is validated using 
both experimental and mathematical techniques.  
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1. INTRODUCTION 

BDDs are well known structures used in the design verification and optimization of digital 
circuits [1]. For the last two decades, BDDs have gained great popularity in representing discrete 
functions.  A BDD in general is a direct acyclic graph representation of Boolean functions 
proposed by Akers and Bryant [2], [3].The success of this technique has attracted researchers in 
the area of VLSI CAD systems [1], [4]. 

The efficiency of a BDD depends mainly on the size of its graph representation.  Over the years 
the complexity of BDD implementation kept increasing, and the number of nodes in a BDD 
became a major concern, since it is directly related to the time and space requirements of the 
digital circuit represented by this BDD [5], [6]. Today, researchers in this area are actively 
involved in the search for methods to minimize the size of BDDs and consequently improve the 
overall performance of the designed systems. 

One of the important tasks during the design phase of a digital system is to prove the efficiency by 
checking whether the design fulfills the requirements. Evaluation time is one of the important 
factors which use the BDD to evaluate logic functions [7]. The evaluation time is not directly 
related to the number of nodes in a BDD, but it is proportional to the path length of the BDD. 
Therefore, minimization of the path length can improve the performance of the circuit 
implementing a Boolean function, which will eventually increase the quality of the final 
implementation [8], [9]. In general the minimization of the path length in Decision Diagrams 
(DD) is important in database structures, pattern recognition, logic simulation and software 
synthesis [8]. The minimization of path lengths are of great importance in embedded systems, real 
time operating system applications [10], [11] and also for Pass Transistor Logic (PTL) [12], [13].  

In order to find the minimum Shortest Path Length (SPL), we need to create the whole BDD 
representing the Boolean function with the best possible variable ordering. Building the whole 
BDD may lead to some complexity in the design process in term of time required to implement, 
verify and test the design. It will be useful to have a kind of estimation for the path length size 
prior to make decisions on the feasibility of the design. 

The main objective of this paper is to introduce a novel method for the prediction of the SPL of 
BDDs based on mathematical model. The proposed model will provide some valuable 
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information about the path length complexity for any number of variables and for any type of 
variable ordering method which will enable the system performance to be analyzed without 
building the BDD. It is also capable of predicting the number of product terms in the Boolean 
function that leads to the maximum SPL complexity. The remaining of this paper is divided as 
follows: in the second section, we provide the background information pertaining to the BDD and 
the path length of a BDD. Section three reviews the previous work done on estimation of BDD 
complexities. The proposed method with the experimental results followed by the mathematical 
model are given in section four and five respectively. The advantage of this mathematical model 
is given in section six. Finally, we conclude our paper with future developments in this research 
work. 

2. PRELIMINARIES 

Basic definitions for BDDs and path length are given in [1], [3], [5], [8], [10]. In the following we 
review some of these definitions.  

Definition 1: A BDD is a directed acyclic graph (DAG). The graph has two sink nodes labeled 0 
and 1 representing the Boolean functions 0 and 1. Each non-sink node is labeled with a Boolean 
variable v and has two out-edges labeled 1 (or then) and 0 (or else). Each non-sink node 
represents the Boolean function corresponding to its edge "1" if v = 1, or the Boolean function 
corresponding to its edge "0" if v = 0. 

Definition 2: An Ordered BDD (OBDD) is a BDD in which each variable is encountered no more 
than once in any path and always in the same order along each path. 

Definition 3: A Reduced OBDD (ROBDD) is an OBDD which no nodes have equivalent 
behavior. 

2.1    Variable Ordering 

The size of a BDD is largely affected and its variation can be linear or exponential depending on 
the choice of the variable ordering in building the BDD. Figure 1 illustrates the effect of the 
variable ordering [3] on the size of BDDs for the Boolean function (1): 

431432121 xxxxxxxxxf ⋅⋅+⋅⋅⋅+⋅=    (1) 
 

    
     (a) 4321 xxxx                   (b) 4231 xxxx  

Figure 1: Effect of the variable ordering on the size of BDD 

Definition 4: In a BDD, a sequence of edge and nodes leading from the root node to a terminal 
node is called Path. The number of non-terminal nodes on the path is called the Path Length. 

Definition 5: The APL is equal to the sum of the node traversing probabilities of the non-terminal 
nodes [8], [10]. Node traversing probability denoted by )( ivP is the fraction of all 2n assignments 
of values to the variables whose path includes node iv . The APL can be expressed by the 
following equation (2): 
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Where, N is the number of non-terminal nodes. 

Definition 6: The Shortest Path Length (SPL) of a BDD denoted by SPL (BDD), is the Length of 
the Shortest Path from root node to terminal node. 

3. PREVIOUS WORK 

In this section we will briefly describe works done in the area of the estimation of BDD 
complexity prior to explaining the proposed method. 

3.1 Relation between the Size of a Boolean Function and the ROBDD Complexity 

The complexity of the ROBDD mainly depends on the number of nodes represented by the 
ROBDD. An experiment was done in [14], [15] to analyze the complexity variation in ROBDDs 
i.e. the relation between the number of product terms and the number of nodes for any number of 
variables. The experimental graph variation reveals that the complexity of the ROBDD can be 
modeled mathematically by the equation (3). Figure 2 indicates that the mathematical model 
represented by equation (3) provides a very good approximation of the ROBDD complexity.  

     

1)( +⋅⋅= ⋅− γβα NPTeNPTNN         (3) 
Where,  
NN is the number of nodes (Complexity of ROBDD), NPT is the number of non-repeating product 
terms in the Boolean function, α, β and γ are three constants. For 10 variables the values of the 
constants are  α = 7.7, β =0.904 and γ = 0.0145. 
 

 
Figure 2: Experimental/Equation BDD Complexity for 10 variables. 
 

3.2 Behavior of XOR/XNOR Min-term Representations  

This work analyzed the complexity variation in ROBDD for a specific group of XOR/XNOR 
min-terms [16]. A graph that represents the ROBDD complexity in terms of number of nodes with 
respect to the number XOR/XNOR min-terms of the Boolean function is then plotted and the 
behavior of XOR/XNOR was modeled mathematically by equation (4): Figure 3 show that the 
mathematical model represented by equation (4) provides a good approximation of the 
experimental ROBDD complexity. 

  [ ] 1)(
5.022 +−−⋅= ββα NXMNN                                       (4) 
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where, NN is the number of nodes (Complexity of ROBDD), NXM is the number of XOR/XNOR 
min-terms in the Boolean function, and β   is 2n-2 (n-number of inputs) and  α = 0.605234. 

 

.  
Figure 3: Experimental/Equation ROBDD Complexity for XOR/XNOR Min-terms 

4. BDD PATH LENGTH COMPLEXITY ANALYSIS  

4.1 Proposed Method 

An experiment was carried out using Colorado University Decision Diagram (CUDD) Package 
[17] to analyze the complexity variation of SPL with the number of product terms for any number 
of variables. For each variable count n between 1 and 14 inclusive, and for each term count 
between 1 and 2n-1, 100 Boolean functions were randomly generated and the SPL average was 
determined by using CUDD package for specific variable ordering technique and was plotted 
against term count for each variable count. The following algorithm explains this method in 
detail. 

Step 1: The number of variables (n) is fixed (for example n =10 variables)   
Step 2: The variable ordering technique is selected (Ex: Symmetric Sift is chosen from the 
CUDD) 
Step 3: Number of product terms (m) is set to 1 
Step 4: A random Boolean function with m product terms is generated. 
Step 5: Run the CUDD in order to build the BDD for the Boolean function 
Step 6: Reorder the BDD using the variable ordering selected in step 2. 
Step 7: Record the number of nodes in the ROBDD. 
Step 8: Steps 4 to 7 are repeated 100 times to build 100 different BDDs for different random 
equations with the same number of product terms. For each BDD the APL and SPL are calculated 
and the mean sizes are recorded. 
Step 9: Steps 4 to 8 are repeated for m = 2, 3, 4, etc. until the average size of the SPL 
complexities becomes 1. 
Step 10: A graph that represents the SPL complexity in terms of number of nodes with respect to 
the number product terms of the Boolean function is then plotted. 
 

4.2 SPL variations against the size of the Boolean function 

Figure 4 illustrates the SPL complexity relation for Boolean functions with product terms having 
n=10 variables using the Symmetric Sift reordering technique.  The Symmetric Sift reordering 
technique was used as the base variable ordering method, due to its efficiency compared to all the 
CUDD methods.  
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Figure 4: SPL size variation for 10 variables using the Symmetric Sift reordering technique. 

 
The graph indicates that the complexity (size) of the path length in general (SPL) increases as the 
number of product terms increases. This is clear from the rising edge of the curve shown in 
Figures 4. At the end of the rising edge in the graph, the size of the SPL reaches a maximum 
( 4.5≅SPL  in this case). This peak indicates the maximum SPL that any Boolean function with 10 
variables can produce independently of the number of product terms. Apart of that the peak also 
specifies the number of product terms (critical limit) of a Boolean function that leads to the 
maximum number of SPL for any Boolean function with 10 variables. The number of product 
terms that leads to the maximum SPL is 50. If the number of product terms increases above the 
critical limit, as expected, the product terms starts to simplify and the BDD will reduce, which 
will reduce the SPL size.  

The SPL graph shown in Figure 4 indicates that as the number of product terms increases the 
complexity of the SPL decreases in a slower rate and ultimately reaches to 0. Figure 4 illustrates 
that the falling edge of the SPL graph behaves a bit different than the other complexity graphs 
shown in Figure 2 and Figure 3, where the decrease is with a roll off, to be independent of the 
variable count. The location and height of the peak and the slope of the logarithm of the roll off 
varied.  Reduction of the SPL complexity to 0 implies that all the product terms simplify to logic 
1.  A simple algebraic expression for these curves was developed, unifying all the cases. 

5. MATHEMATICAL MODEL FOR THE PATH LENGTH BEHAVIOR  

Exponentials of rational polynomials fitted the data well; but, a theoretical precedent was not 
apparent. On the other hand, )1()1log( ++ tt not only has the same basic behavior, but is also 
implicated in other complexity measures, such as Kolmogorov, Tichner, Shannon and Lempel-Zif 
complexity, as well as the density of the prime numbers. The generic SPL graph has an initial  
rise, two peaks, and roll off to zero, suggesting the sum of two formulas, but with horizontal and 
vertical scaling, and a little peak shaping. Under suitable conditions, if )(xf has a peak, then, 

max
max

)( ff
xf ⋅







α

 has a broader or narrow peak for 1〈α or 1〉α . Analyzing all the above factors 

for the behavior of the SPL graph, the complexity behavior was modeled mathematically by the 
following equations: 
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Where, t is the number of product terms in the Boolean function. 
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The (mostly) constantsα  and β parameters affect the shape of the peak. The 
values 1,7 11 == βα and 102 =α gave a close fit, but 2β  taking on two distinct values. 32 =β   for 

11≤v  and 52 =β for 12≥v . Eventually the following equation (6) was used in order to calculate 
the constant 2β , 


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+=

− 1][
8.13 2)5.11(2 ve

β     (6) 

It can be inferred from the Figure 4 that the curve has two peaks ( Figure5), which needs four 
scaling parameters to define the locations of the peaks: i.e. ),( 11 yx and  ),( 22 yx  

 
Figure 5: Peaks of the SPL complexity behavior 
 
The final behavior of the SPL curve can be found by the following equation: 
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In this mathematical model, the peaks ),( ii yx were found by performing an empirical fit for each 
time. Figure 6 depicts the experimental results obtained by the CUDD package and the theoretical 
results obtained using equation (7). It shows that the mathematical model represented by equation 
(7) provides a very good estimation for the SPL complexity behavior, where the experimental and 
equational results produced a match. 

 

 
Figure 6: Experimental/Equation SPL Complexity behavior for 10 variables 
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Further verification of the mathematical model was done by matching the model for Boolean 
functions with 2 to 15 variables. It can be inferred that the experimental and mathematical curves 
are following a similar pattern for all the variable levels. Figure 7 and Figure 8 illustrate the 
experimental and mathematical models for variables 8 and 12 respectively. 

 
Figure 7: Experimental/Equation SPL Complexity behavior for 8 variables 
 
5.1 Effect of the Reordering Methods on Path length Variations 

The experiment done in section 4 using the Symmetric Sift CUDD reordering method was 
extended to understand the relation of Symmetric Sift SPL graphs with other reordering 
techniques. It was observed that the relation between the graphs follows the same pattern, and it 
varies only on the amplitude factor of the curves. 

 
Figure 8: Experimental/Equation SPL Complexity behavior for 12 variables 
 
By analyzing the effect of the reordering methods on the model, equation (7) can be modified 
with an additional amplification factor (µ). The amplification factor is 1 for the Symmetric Sift, 
greater than 1 for methods with lower efficiency, and lesser than 1 for methods with higher 
efficiency than the Symmetric Sift. Equation (8) represents the mathematical model for the SPL 
for any reordering method. 
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The amplification factor was calculated and depicted in table 1. Figure 9 shows the comparison 
graphs of the SPL behavior for Symmetric Sift with two of the other CUDD variable ordering 
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techniques mainly the Genetic Algorithm and Window2. These two graphs show that the 
efficiency of the reordering method has a definite impact on the path length complexity; an 
efficient variables ordering leads to a reduced number of nodes, which leads to reduced path 
lengths.  

Table 1: Amplification Factor (µ) 
Variable Reordering 
Method 

Amplificatio
n Factor (µ) 

Random 1.024 
Random Pivot 0.998 
Sift 1.001 
Symmetric Sift 1.000 
Symmetric Sift Converge 0.971 
Group Sift 1.006 
Group Sift Converge 0.963 
Window 2 1.085 
Window 3 1.045 
Window 4 1.018 
Window Converge 2 1.058 
Window Converge 3 1.025 
Window Converge 4 0.989 
Annealing 0.945 
Genetic Algorithm 0.942 
Exact 0.942 

 
Figure 9: Effect of the reordering methods for SPL variations 

6.   ADVANTAGES  

The developed mathematical model represented by equation (7), provides some useful 
information on the following, without the need of building the BDD. 

1. The complexity behavior of the SPL, given the number of product terms of the Boolean 
function 

2. The number of product terms for which the maximum possible depth will occur. 
3. The maximum complexity of the SPL of Boolean functions for any number of variables. 
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7.    FUTURE WORK 

Future work includes minimizing the global error of the match and to develop experiments to 
much larger number of variables. We are in the process of matching an automated global fit for 
any SPL curve in order to find the complexity for any number of product terms. Investigation and 
modeling a mathematical relationship for other BDD characteristics (i.e. average path length, 
longest path length and number of path) are also considered. 

8.  CONCLUSION 

We have discussed the idea of using BDD to study and model a relationship between the path 
length and the number of product terms in a Boolean function. We have introduced a 
mathematical model that can predict valuable information related to the SPL behavior without 
building the BDD. A great reduction in time complexity for digital circuits' designs can be 
achieved and the model can also offer useful information to handle evaluation time minimization 
by path length optimization problems prior to the design of digital circuits. Our experimental 
results show good correlation between the experimental results and those given by the 
mathematical model. 

REFERENCES 

[1] K. Priyank, “VLSI Logic Test, Validation and Verification, Properties & Applications of 
Binary Decision Diagrams,” Lecture Notes, Department of Electrical and Computer 
Engineering University of Utah, Salt Lake City, UT 84112. 

[2] S.  B. Akers, "Binary Decision Diagram," IEEE Trans. Computers, Vol. 27, pp. 509-516, 
1978. 

[3] R. E. Bryant, "Graph−Based Algorithm for Boolean Function Manipulation," IEEE Trans. 
Computers, Vol. 35, pp. 677-691, 1986. 

[4] Miczo, Alexander, Digital Logic Testing and Simulation, Chapter 2: "Combinational Logic 
Test," Harper and Row, New York, 1986. 

[5] R. Drechsler and D. Sieling “Binary Decision Diagrams in Theory and Practice,” Springer-
Verlag Trans, pp. 112-136., 2001.  

[6] P.W.C. Prasad, A. Assi and M. Raseen, “BDD Minimization Using Graph Parameter 
Permutation”, The 2004 International Conference on VLSI, 491-494, 2004. 

[7] Görschwin Fey, Junhao Shi and Rolf Drechsler, “BDD Circuit Optimization for Path Delay 
Fault-Testability”, Proceedings of EUROMICRO Symposium on Digital System Design, pp. 
168-172, 2004. 

[8] S. Nagayama and T. Sasao, “On the minimization of longest path length for decision 
diagrams,” International Workshop on Logic and Synthesis (IWLS-2004), pp. 28-35, 2004. 

[9] Y. Liu, K. H. Wang, T. T. Hwang, C. L. Liu, “Binary decision Diagrams with minimum 
expected path length,” Proceedings of DATE 01, pp. 708–712, 2001. 

[10] R. Ebendt, S. Hoehne, W. Guenther, and R. Drechsler, “Minimization of the expected path 
length in BDDs based on local changes,” Asia and South Pacific Design Automation 
Conference (ASP-DAC’2004), pp. 866-871, Jan. 2004. 

[11] S. Nagayama and T. Sasao, “Code generation for embedded systems using heterogeneous 
MDDs,” the 12th workshop on Synthesis and System Integration of Mixed Information 
technologies (SASIMI 2003), pp. 258-264, Hiroshima, Japan, April 3-4, 2003. 

[12] R. S. Shelar and S. S. Sapatnekar, “Recursive Bi-partitioning of BDD's for Performance 
Driven Synthesis of Pass Transistor Logic,” Proceedings of IEEE/ACM ICCAD, pp. 449 – 
452, 2001. 

[13] V. Bertacco, S. Minato, P. Verplaetse, L. Benini, and G. De Micheli: "Decision Diagrams 
and Pass Transistor Logic Synthesis", Stanford University CSL Technical Report, No. CSL-
TR-97-748, Dec. 1997.  



The Second International Conference on Innovations in Information Technology (IIT’05) 
 

 

 10 

[14] M. Raseen, P.W.C. Prasad and A. Assi, “Mathematical Model to Predict the Number of 
Nodes in an ROBDD,” The 47th IEEE International Midwest Symposium on Circuit and 
Systems (MWSCAS), Vol. III, pp.431-434, 2004. 

[15] Ali Assi, M. Raseen, P.W.C. Prasad and A. Harb, “An Efficient Mathematical Estimation of 
the BDDs Complexity”, Accepted for presentation in 16th IASTED International  Conference 
on Modeling and Simulation, pp 381-386, 2005. 

[16]  M. Raseen, A.Assi, P.W. C. Prasad and A. Harb, "Effect of Boolean Min-terms on the 
Complexity of ROBDDs", International Conference on Computational Intelligence (ICCI 
2004), pp.454-457, 2004. 

[17] F. Somenzi, “CUDD: Decision Diagram Package”. ftp://vlsi.colorado.edu/ pub/, 2003. 

 
 


