

The Second International Conference on Innovations in Information Technology (IIT’05)

 1

StASOAP: Streaming API for SOAP

Antonio J. Sierra
Department Ing. Sist. Automat,Área de Telemática, University of Sevilla,

C/Camino de los Descubrimientos s/n
Email: antonio@trajano.us.es

ABSTRACT
This paper shows an event-based API for using SOAP over Java platform J2ME, known as Streaming API
for SOAP (StASOAP). StASOAP is a streaming and bi-directional API for SOAP over resources-
constrained devices based on XML Pull parsing model’s extensions. This API uses an event-based XML
pull-everything parser. Some uses of SOAP Version 1.2 emphasized the use of a pattern in which multiple
message exchanges between two nodes, sender and receiver, as means for conveying remote procedure calls
(RPC). Pull-everything, in-situ XML parsers require a complete serialized representation of XML
document, to give a more flexible and scalable implementation.

Keywords: SOAP, XML, Pull, J2ME, Java.

1. INTRODUCTION

Two types of interfaces are available for parsing XML documents, tree-based interfaces and
event-based interfaces. Tree based XML parser read an entire XML document into an internal tree
structure in memory. Each node of the tree represents a piece of data from the original document.
It allows an application to navigate and manipulate the parsed data quickly and easily. But a tree-
based XML parser can be very memory- and CPU-intensive because it keeps the whole data
structure in memory. An event-based XML parser reports parsing events directly to the
application. It provides a serial-access mechanism for accessing XML documents. In general,
event-based XML parsers are faster and consume less CPU and memory than DOM parser. But,
event-based parser allow only serial access to the XML data, we can’t go back to an early position
or leap ahead to a different position.

Pull-everything, in-situ XML parsers are about as far as you can go, they can do anything. Data-
copying XML parsers copy all the information in the parsed XML document into objects,
returned to the client. In-situ XML parsers, as much as possible, indicate where data was found in
the parsed XML document. In-situ is more powerful than data-copying: if the client doesn’t care
where the data is, either will do; if the client cares, only in-situ will do. In-situ parsing is a good
fit for small-footprint devices. A XML parser’s implementation need to mantain a serialized
representation (that could be the virtual data source) to move back the cursor, such as is shown
Free Cursor Mobility (FCM) [1].

Simple Object Access Protocol (SOAP) Version 1.2 is a lightweight protocol intended for
exchanging information decentralized, distributed environment, that uses XML technologies to
define an extensible messaging framework providing a message construct that can be exchange
over a variety of underlying protocols [3]. However fundamentally SOAP is a stateless, one-way
message exchange model, applications can create more complex interaction patterns by
combining such one-way exchanges with features provided by an underlying protocol and/or
application-specific information. The SOAP is an XML messaging specification that describes a
message format along with a set of serialization rules for data types including structured types and
arrays. SOAP Version 1.2 can encapsulate remote procedure call functionality using the
extensibility and flexibility of XML.

A small-footprint device by definition has an extremely limited amount of memory, and
traditional packages are far too large and resource-intensive to work on resources-constrained
devices. These are simply too small to be expected to work with packages originally designed for
desktop clients and servers. An event-based XML parser uses much less memory than a tree-

The Second International Conference on Innovations in Information Technology (IIT’05)

 2

based XML parser since it doesn't have to hold the entire document in memory simultaneously. It
can process the document in small pieces. This implementation uses an event-based XML pull-
eve everything, in-situ parser to give support for a SOAP implementation in a framework of
small-footprint.

This paper is organized as follows first we present related work for the same platform. Next, the
SOAP protocol and SOAP HTTP binding is shown. Next, we present the detail of the
implementation. And finally conclusions are shown.

2. RELATED WORK FOR J2ME

 A DOM parser returns a “tree” representation of the XML document. A Push parser calls client’s
methods with XML events. A Pull parser returns XML events to a client on request. DOM
provides APIs that allows access and manipulation of an in-memory using a “tree” representation
of the XML document. At first glance this seems like a win for the application developer.
However, this perceived simplicity comes at a very high cost, the performance. An
implementation for small-footprint devices must not provide any support for DOM, because is
generally considered to be too heavy, both in terms of implementation size and runtime memory
footprint, to be used on the J2ME platform. In this section we show two implementations for Web
Services in the framework of J2ME. Java Specification Request 172 (JSR-172) [6] and kSOAP
[7], none of then uses a DOM or like-DOM parser.

kSOAP uses an extremely memory efficient pull J2ME parser, however test realized shown a best
memory performance for JSR-172. kSOAP has a class SoapEnvelope, with two attributes public
Element []headerIn (or headerOut), also contain another for the Body, public Object
bodyIn/bodyOut.

To use SAX, a programmer writes handlers, that is objects that implement the various SAX
handler APIs, which receive callbacks during the processing of an XML document. The main
benefits of this style of XML document processing are that it is efficient, flexible, and relatively
low level. An implementation of SOAP for J2ME for Web Services is the JSR-172, which used a
subset of Simple API for XML (SAX) 2.0 [9] for parsing XML document. JSR-172 proposes an
implementation with no server capabilities, which is a strict subset of the JAXP 1.2 specification,
which uses SAX 2.0.

 A problem of the current implementation is the soap’s version. kSOAP and JSR-172 implements
SOAP 1.1, and the new SOAP version, 1.2, is not compatible. StASOAP is an implementation of
SOAP 1.2, that unlikely to kSOAP and JSR-172 uses the real types, float and double for data
binding.

3. SOAP

SOAP messages are transmitted between applications and may pass through a number of
intermediaries as they travel from the initial sender to the ultimate recipient. A SOAP message is
one-way transmission between SOAP nodes, from a SOAP sender to a SOAP receiver but SOAP
messages are expected to be combined by applications to implement more complex interaction
patterns ranging from request/response to multiple. SOAP messages are comprised of an
Envelope element, with an optional Header and a mandatory Body child element. The Envelope
element is the root element for all SOAP messages, identifying the XML as a SOAP message.
Child element. A pictorial representation of the SOAP message we can see in Figure 1.

The Second International Conference on Innovations in Information Technology (IIT’05)

 3

Figure 1: SOAP message.

The header blocks reservation and passenger must be processed by the nest SOAP intermediary
encountered in the message path or, if there is no intermediary, by the ultimate recipient of the
message. The Body element and its associated child elements, itinerary and lodging, are intended
for exchange of information between the initial SOAP sender and the SOAP node which assumes
the role of the ultimate SOAP receiver. The means by which a SOAP node assumes such a role is
not defined by the SOAP specification, and is determined as a part of the overall application
semantics and associated message flow.

3.1 Header

The Header element namespace serves as a container for extensions to SOAP. No extensions are
defined by the specification, but user-defined extension services such as transaction support,
locale information, authentication, digital signatures, and so forth could all be implemented by
placing some information inside the Header element. Children of the Header element may be
annotated with the mustUnderstand and/or actor attributes.

3.2 Body

The SOAP Body is the mandatory element within the SOAP Envelope, which implies that this is
where the main end-to-end information conveyed in a SOAP message must be carried. The SOAP
Body provides a mechanism for transmitting information to an ultimate SOAP receiver.

3.3 Fault

The Fault element indicates that an error occurred while processing a SOAP request. This only
appears in response messages. Child elements are, two mandatory (Code, Reason), and three
optional (Node, Role and Detail).

 The Code element has one (Value) or two (Value and Subcode) child in order to define a small
set of SOAP fault codes covering high level SOAP faults. The Reason is a human readable
explanation of the fault.

 The Node element information item is intended to provide information about which SOAP node
on the SOAP message path caused the fault to happen. The Role element identifies the role the
node was operating in at the point the fault occurred. The Detail might contain information about
a message not containing the proper credentials, a timeout, etc. The presence of the Detail
element information item has no significance as to which parts of the faulty SOAP message were
processed.

3.4 Attributes

Further processing of header blocks and the body depend on the role assumed by the SOAP node
for the processing of a given message. SOAP defines the optional role attribute that may be
present in a header block, which identifies the role played by the intended target of that header
block.

The Second International Conference on Innovations in Information Technology (IIT’05)

 4

 In order to ensure that SOAP node do not ignore header blocks which are important to the overall
purpose of the application, SOAP header blocks also provide for the additional optional attribute,
mustUnderstand, which, if "true", means that the SOAP node must process the header with the
semantics described in the specification of the header.

SOAP Version 1.2 defines another optional attribute for header blocks, relay, which indicates if a
header block targeted at a SOAP intermediary must be relayed if it is not processed.

4. TYPE MAPPING

The rules and format of serialization for XML data types are based on the encoding style. XML
data types are as defined in the XML Schema Part II-Datatypes [13]. kSOAP serialize type data to
mapping to the Java type Integer, Boolean, Long, String, Date, Base64 and Vector. JSR-172
appends Short and Byte, and to uses arrays uses the class TypeVector that extends Vector, to
append information about the type supported and information nillable. An element with nillable
attribute set to true for a built-in simple XML data type is mapped to the corresponding Java
wrapper class for the Java primitive type. By implementing KvmSerializable, a developer can
continue to use his own data object in kSOAP. StASOAP appends the type Qname, Double and
Float.

5. SERIALIZATION

SOAP defines a set of serialization rules for encoding data types in XML. To implement the
serialization at J2ME is different to J2SE. All data is serialized as elements rather than attributes.
For simple types such strings, numbers, dates, and so forth, the data types defined in XML
Schema Part II-Datatypes [13] are used. For types such as classes or structures, each field in the
type is serialized using an element with the same name as the field. For array types, each array
element is typically serialized using an element with the same name as the type, although other
element names may be used. In both cases, if the field being serialized is itself a structure or an
array, then nested elements are used. The top-level element in both the structure case and the
array case is namespace qualified. Descendant elements should be unqualified. Serializing data
structures, when each field is referred to exactly once, is straightforward. Each field is serialized
as an embedded element, a descendant element of the Body element, not as an immediate child.

6. SOAP HTTP BINDING

When we use SOAP, we think usually in XML over HTTP. HTTP is an excellent transport for
SOAP due to wide use. HTTP is a protocol omnipresent and is a good format of message
standard. SOAP defines a binding to the HTTP protocol. This binding describes the relationship
between parts of the SOAP request message and various HTTP headers.

In the SOAP 1.2 HTTP binding, the Content-type header should be "application/soap+xml"
instead of "text+xml" as in SOAP 1.1.

In the SOAP 1.2 HTTP Binding the SOAPAction HTTP header defined in SOAP 1.1 has been
removed, and a new HTTP code 427 has been sought from IANA for indicating that its presence
is required by the server application. The contents of the former SOAPAction HTTP header are
now expressed as a value of an (optional) "action" parameter of the "application/soap+xml"
media type that is signaled in the HTTP binding.

SOAP 1.2 provides a finer grained description of use of various 2xx, 3xx, 4xx HTTP status codes.
SOAP 1.2 also provides an additional message exchange pattern, which may be used as a part of
the HTTP biding that allows the use of HTTP GET for sale and idempotent information retrievals.

The Content-Length header for SOAP requests and responses is set to the number of bytes in the
body of the request or response.

The Second International Conference on Innovations in Information Technology (IIT’05)

 5

 J2ME uses the interface HttpConnection to manage HTTP protocol. With the static methods open
of the Connection class can open HTTP connection. The server and the client have no any
information about the connection, so we can uses cookies for identifying the connection, with the
setRequestProperty of the HttpConnection.

7. IMPLEMENTATION

7.1 Introduction

A pull-everything for XML consists of two styles: A low-level cursor API, designed for creating
object models and a higher-level event iterator API, designed to be easily extensible access to the
serialized representation of the all XML document.

A pull (and pull-everything) XML parser gives parsing control to the programmer by exposing a
simple iterator based API and an underlying stream of events. Methods such as next() and
hasNext() allow an application developer to ask for the next event (pull the event) rather than
handling the event in a callback. This gives a developer more procedural control over the
processing of the XML document. Pull (and pull-everything) XML parser allows the programmer
to stop processing the document, skip ahead to sections of the document, and get subsections of
the document. With a parser that uses pull- everything parsing, we implement this API to uses
SOAP to look for more efficiency in memory, in an event. This API consists of two styles, a low-
level cursor API, designed for creating object models and a higher-level event iterator API,
designed to be used in pipelines and be easily extensible.

SOAP is an XML message format that can be used as a transport for remote procedure calls
(RPC). From a Java server-side perspective, processing an RPC-encoded SOAP message requires
the message to be parsed and a reply to be constructed. During the inbound processing the
application must identify the proper method to invoke, unmarshal the arguments to the method
from XML to Java, invoke the method and marshal the output of the method into the SOAP
response envelope.

Figure 2: Scenario.

7.2 Implementation’s Classes

Under the consideration of resources-constrained devices, the implementation must use less
number of class and interfaces. The directory com.sierra.io contains the Input/Output operation to
read XML data in the different encoding schemes. The directory com.sierra.xml.fcm contains the
classes related to XML parser.

The directory com.sierra.xml.soap.fcm contains the core of soap’s implementation. This API uses
the interfaces SOAPFCMReader and SOAPFCMWriter, SOAPFCMException and
SOAPFCMConstants, to management the event.

The directory com.sierra.xml.soap.rpc contain information of the XML datatype supported. The
directory com.sierra.xml.soap.transport contain the class HttpTransport to establish the
connection.

The Second International Conference on Innovations in Information Technology (IIT’05)

 6

+---com
 \---sierra
 +---io
 | | ArrayInputStream.java
 | | XMLReader.java
 | | XMLWriter.java
 | |
 | \---i18n
 | ReaderUCS4.java
 | ReaderUTF16.java
 | ReaderUTF8.java
 | WriterUCS4.java
 | WriterUTF16.java
 | WriterUTF8.java
 |
 \---xml
 | XMLConstants.java
 |
 +---fcm
 | Location.java
 | XMLFCMConstants.java
 | XMLFCMException.java
 | XMLFCMReader.java
 | XMLFCMWriter.java
 |
 +---namespace
 | NamespaceContext.java
 | QName.java
 |
 \---soap
 | ConstantsType.java
 | SOAPConstants.java
 | SOAPFCMConstants.java
 | SoapMessage.java
 |
 +---fcm
 | SOAPFCMException.java
 | SOAPFCMReader.java
 | SOAPFCMWriter.java
 |
 +---rpc
 | Type.java
 |
 \---transport
 HttpTransport.java

Figure 3: Classes of the implementation.

The class HttpTransport contains the method call to establish communication to the server. The
method call need as parameter the remote soap method to be executed.

The SoapMessage class configures the parameter to the method called.

8.2 SOAPFCMWriter

SOAPFCMWriter is used for writing a SOAP document, and is based on XMLFCMWriter, to send
the XML document. This interface has methods to write well-formed SOAP message, flush o
close the output and write qualified names.

SOAPFCMWriter provide all XMLFCMWriter‘s method, because this class is provided in the
constructor the SOAPFCMWriter class, and append the methods described in the Table 4.

The Second International Conference on Innovations in Information Technology (IIT’05)

 7

Method Description
public void writeStartEnvelope() Writes the start of SOAP message’s envelope to

the output. This method writes the prefix.
(provided as parameter) and the namespace.

public void writeEndEnvelope() Writes an envelope’s end tag to the output
relying on the internal state of the writer to
determine the prefix and local name of the
envelope.

public void writeStartHeader() Writes the start tag of header. This method
writes the prefix.

public void writeEndHeader() Writes a header’s end tag to the output relying
on the internal state of the writer to determine
the prefix and local name of the envelope.

public void writeStartBody() Writes the start tag of body. This method writes
the prefix.

public void writeEndBody() Writes a body’s end tag to the output relying on
the internal state of the writer to determine the
prefix and local name of the envelope.

public void setMethodAndParameter() This method needs as parameter a SoapMessage
object, and a prefix (if we don’t uses the
prefixDefault).

public void flush()E Write any cached data to the underlying output
mechanism.

Figure 4: Methods of SOAPFCMWriter.

8.2 SOAPFCMReader

The class SOAPFCMReader is based on XMLFCMReader and provides methods to get event’s
information. Similarly to XMLFCMReader, SOAPFCMReader, has the next(), and hasNext()
methods to obtain different events from the XML data. SOAPFCMReader provides more methods
associated to the different events obtain.

Event in StSOAP Description
SOAPFCMConstants.START_SOAP public boolean isFaul()
SOAPFCMConstants.CODE public String getCode()
SOAPFCMConstants.REASON public String getReasonText()
SOAPFCMConstants.REASON public String getReasonLanguage()
SOAPFCMConstants.NODE public String getNode()
SOAPFCMConstants.DETAIL public String getDetail()
SOAPFCMConstants.ROLE public String getRole()
SOAPFCMConstants.VALUE public String getValue()
SOAPFCMConstants.SUBCODE public boolean hasSubcode()
SOAPFCMConstants.SUBCODE public String getSubcode()
SOAPFCMConstants.SUBCODE public int getSubcodeCount()
SOAPFCMConstants.SUBCODE public String getSubcodeValue(int count)
SOAPFCMConstants.MUSTUNDERSTAND public boolean getMustUnderstand()
SOAPFCMConstants.MUSTUNDERSTAND public boolean hasMustUnderstand()
SOAPFCMConstants.RELAY public boolean getRelay()
SOAPFCMConstants.RELAY public boolean hasRelay()
SOAPFCMConstants.ENCODINGSTYLE public String getEncodingStyle()
SOAPFCMConstants.ENCODINGSTYLE public String hasEncodingStyle()
SOAPFCMConstants.ROLEATTRIBUTE public String getRoleAttribute()
SOAPFCMConstants.ROLEATTRIBUTE public String hasRoleAttribute()

Figure 5: Methods of SOAPFCMReader.

The Second International Conference on Innovations in Information Technology (IIT’05)

 8

The value return for the call method is returned with Object getResponse().

8.1 SOAPFCMConstants

SOAPFCMConstants extends the events specified in XMLFCMConstants. This interface appends
the new events that appear in the following table.

Event in StSOAP Description
SOAPFCMConstants.START_SOAP Indicates an event is a start document soap
SOAPFCMConstants.END_SOAP Indicates an event is an end document soap
SOAPFCMConstants.START_HEADER Indicates an event is a start Header
SOAPFCMConstants.END_HEADER Indicates an event is a end Header
SOAPFCMConstants.START_BODY Indicates an event is a start Body
SOAPFCMConstants.END_BODY Indicates an event is a end Body
SOAPFCMConstants.START_FAULT Indicates an event is a start Fault
SOAPFCMConstants.END_FAULT Indicates an event is a end Fault
SOAPFCMConstants.CODE Indicates an event is the Fault’s Code
SOAPFCMConstants.REASON Indicates an event is the Fault’s Reason
SOAPFCMConstants.NODE Indicates an event is the Fault’s Node
SOAPFCMConstants.DETAIL Indicates an event is the Fault’s Detail
SOAPFCMConstants.VALUE Indicates an event is the Fault’s Value
SOAPFCMConstants.SUBCODE Indicates an event is the Fault’s Subcode
SOAPFCMConstants.MUSTUNDERSTAND Indicates event is attribute mustUnderstand
SOAPFCMConstants.RELAY Indicates an event is attribute Relay
SOAPFCMConstants.ROLE Indicates an event is attribute Role
SOAPFCMConstants.ENCODINGSTYLE Indicates an event is attribute encodingStyle
SOAPFCMConstants.ROLEATTRIBUTE Indicates an event is attribute Role

Figure 6: Events of SOAPFCMConstants.

All events available through XMLFCMConstants can be used in any moment. The SOAP events
can be considered as most specialized events.

SOAPFCMConstants, extends events specified in XMLStreamConstants, adding new events
related to XML soap. START_SOAP, END_SOAP, START_HEADER, END_HEADER,
START_BODY, END_BODY, FAULT, END_FAULT, and the events related with the different
element that can be used in a message SOAP 1.2, CODE, REASON, NODE, DETAIL, VALUE,
SUBCODE, MUSTUNDERSTAND, RELAY, ENCODINGSTYLE, ROLEATTRIBUTE.

8.2 SOAPFCMException

Implementations at J2ME must be less number of exceptions.

Code of SOAPFCMException
public class SOAPFCMException extends XMLFCMException {
 /**
 * Default constructor
 */
 public SOAPFCMException (){
 super();
 }
 /**
 * Constructor with a String parameter
 */
 public SOAPFCMException (String info){
 super(info);
 }
}

Figure 7: Exception of the implementation, SOAPFCMException.

The Second International Conference on Innovations in Information Technology (IIT’05)

 9

 The Fault situation for an StSOAP implementation, as response to the remote call procedure, is
treated as an event. kSOAP following uses a class to represent the information related to
situations when faults arise in the processing of a message, and uses the toString() method to
obtain information. Unlikely to kSOAP that uses a class for representing the fault information,
and unlikely too the JSR-172 that is treated as an exception (JAXRPCException because does not
provide the SOAPFaultException). However the SOAPFCMException is supported is not
considered for this point, it is possible throw this exception using the constructor with a String
parameter, where in the parameter has all information related to Fault situation when we receive
the END_FAULT event.

8. EXAMPLE

In this section we present XML soap’s example of a request and response, to a server that have a
database (MySQL). The server to realize request to the database.

9.1 XML SOAP request
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <SOAP-ENV:query>
 <SOAP-ENV:Act xmlns="" xsi:type="xsd:string">
 Autoescuela
 </SOAP-ENV:Act>
 <SOAP-ENV:Pro xmlns="" xsi:type="xsd:string">
 Sevilla
 </SOAP-ENV:Pro>
 <SOAP-ENV:Loc xmlns="" xsi:type="xsd:string">
 Sevilla
 </SOAP-ENV:Loc>
 <SOAP-ENV:Cat xmlns="" xsi:type="xsd:string">
 </SOAP-ENV:Cat>
 <SOAP-ENV:Emp xmlns="" xsi:type="xsd:string">
 Leonesa
 </SOAP-ENV:Emp>
 </SOAP-ENV:query>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 8: Example of a XML SOAP request .

9.2 XML SOAP response
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <ns1:queryResponse>
 <SOAP-ENV:queryReturn
 SOAP-ENV:arrayType="soapenc:string[8]"
 xsi:type="SOAP-ENV:Array">
 <SOAP-ENV:item xsi:type="soapenc:string">
 Autoescuela
 </SOAP-ENV:item>
 <SOAP-ENV:item xsi:type="soapenc:string">
 Sevilla
 </SOAP-ENV:item>
 <SOAP-ENV:item xsi:type="soapenc:string">
 Sevilla
 </SOAP-ENV:item>
 <SOAP-ENV:item xsi:type="soapenc:string">

The Second International Conference on Innovations in Information Technology (IIT’05)

 10

 0
 </SOAP-ENV:item>
 <SOAP-ENV:item xsi:type="soapenc:string">
 Leonesa
 </SOAP-ENV:item>
 <SOAP-ENV:item xsi:type="soapenc:string">
 954232506
 </SOAP-ENV:item>
 <SOAP-ENV:item xsi:type="soapenc:string">
 Reina Mercedes, 1
 </SOAP-ENV:item>
 <SOAP-ENV:item xsi:type="soapenc:string">
 166
 </SOAP-ENV:item>
 </SOAP-ENV:queryReturn>
 </SOAP-ENV:queryResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 9: Example of a XML SOAP response .

ACKNOWLEDGEMENT

Thank to Sam Wilmott, the father of Another Fun Language (http://www.wilmott.ca/afl/), for
your comments.

CONCLUSION

An event-based XML pull-everything parser is used to implement a SOAP Version 1.2, to use a pattern in
which multiple message exchanges between two nodes, sender and receiver, as means for conveying remote
procedure calls (RPC). Streaming API for SOAP (StASOAP) is a streaming and bi-directional API for
SOAP over resources-constrained devices based on XML Pull parsing model’s extensions. Pull-everything,
in-situ XML parsers require a complete serialized representation of XML document, to give a more flexible
and scalable implementation.

REFERENCES

[1] Antonio J. Sierra, “A new Paradigm of Parsing XML based on Free Cursor Mobility (FCM)”,
Extreme Markup Languages 2005.August 1-5, 2005 Montréal, Canada.

[2] Nilo Mitra, “SOAP Version 1.2 Part 0: Primer”, w3c Recommendation, 24 June 2003,
http://www.w3.org/TR/soap12-part0/.

[3] Martin Gudgin et al., “SOAP Version 1.2 Part 1: Messaging Framework”, w3c Recommendation,
24 June 2003, http://www.w3.org/TR/2003/REC-soap12-part1-20030624/.

[4] Martin Gudgin et al., “SOAP Version 1.2 Part 2: Adjuncts”, w3c Recommendation, 24 June 2003,
http://www.w3.org/TR/soap12-part2/.

[5] Hugo Haas, et al., “SOAP Version 1.2:Specification Assertions and Test Collection”, w3c
Recommendation, 24 June 2003, http://www.w3.org/TR/soap12-testcollection/.

[6] Jon Ellis and Mark Young, “Java Specification Requests, JSR-172, J2ME Web Services
Specification”, http://jcp.org/en/jsr/detail?id=172.

[7] http://ksoap.objectweb.org/.
[8] Antonio J. Sierra and Antonio Albéndiz, “Comparative Study of methods of serialization at

J2ME”, The 14th IASTED International Conference on Applied Simulation and Modelling ~ASM
2005, Benalmádena, Spain.

[9] D. Megginson et al., “SAX 2.0: The Simple API for XML”, http://www.saxproject.org.
[10] “Document Object Model”, http://www.w3.org/DOM.
[11] Paul V. Biron and Ashok Malhotra, "XML Schema Part 2: Datatypes" w3c Recommendation 02

May 2001, http://www.w3.org/TR/2001/REC-xmlschema-2-2001/REC-xmlschema-2-20010502/.
[12] Tim Bray, Jean Paoli et al., "Extensible Markup Language (XML) 1.0 (Third Edition)", w3c

Recommendation, 4 February 2004, http://www.w3.org/TR/REC-xml.

